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The expressions for the Coulomb scattering amplitudes F and G up to a4 terms (a = Z/137) for arbitrary 
q—a/(3 are given. These expressions are used to evaluate the cross section dor/dtt and the asymmetry function 
S at small angles. The behavior of F and G as well as d<r/dQ and S near 0 = 180° is also discussed. The ap
proximation is then extended to a screened potential by introducing a cutoff parameter e~^n{ix < < 1) in the 
partial-wave series. The scattering amplitudes and da/dQ, and S are compared with the corresponding 
Coulomb case. 

I. INTRODUCTION 

IN studying the effect of finite scatterer thickness on 
the measurement of electron polarization by means 

of Mott scattering,1 we have been led to investigate the 
analytic behavior of the Mott scattering amplitudes / 
and g (or F and G) at small angles. In the actual case, 
of course, the Coulomb amplitudes are modified at 
small angles because of screening by the atomic elec
trons. This effect has been calculated numerically first 
by Mohr and Tassie,2 and more recently by Lin, 
Sherman, and Percus3 from solutions of the Dirac 
equation in Hartree-like potentials. In order to compare 
with the unscreened Mott amplitudes, we have de
veloped methods for obtaining these Mott amplitudes 
accurately at small angles, and the results are given in 
a separate paper.4 These expressions for F and G are 
valid for all values of x=sin0/2 except at x— 1. 

In this paper we evaluate the cross section dcr/dQ 
and the asymmetry function S using the results of 
paper I. A comparison between da/dQ and 5 obtained 
by exact numerical calculation and by our approxima
tion is given. We also study the behavior of F and G as 
well as da/dQ, and S near 0=180°. Finally, we extend 
our small-angle approximation to a screened potential. 

II. SMALL-ANGLE APPROXIMATION 

According to the results of Sec. 3 of Paper I, the 
ratios FI/FQ and G\/GQ up to A 2 and a¥* 2 t ' 3 are 

/W= 
nrccx iazx* 

eW-
1+2*? 2 g ( l + ^ ) 

ia2ir2x2-2iq erq 

— (1+2*?) 

f a2 

f 

2q sinhirq [2iir w (1 — 2iq) 
(2.1) 
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where 

0= 
r'(i+2^) r'(i-ig) 

r(l + 2fg) r(l -iq) 
* = 2 a r g r ( l + ^ ) - 2 a r g r ( £ - i g ) . 

Here a = Z/137 and q=a/0. 
I t is interesting to notice from (2.1) and (2.2) that 

the behavior of Fi/Fo and Gi/Go for large \q\ (non-
relativistic limit) is markedly different for positrons 
(q<0) and electrons (q>0). For positrons, the oscil
latory terms vanish in the limit \q\ —> ooy whereas for 
electrons they do not. This behavior has been shown to 
be true only up to a4, but can be shown to be true for 
all powers of a2. I t leads to different behavior of da/dti 
and S for electrons and positrons in the nonrelativistic 
limit as noticed by Fradkin, Weber, and Hammer5 for 
the Dirac case and by Rawitscher6 for the corresponding 
Klein-Gordon case. 

We can now write down the cross section and the 
asymmetry function for the small-angle region. The 
cross section is 

da (6) q2 f a2 a2 

^ / ) l - j - T ^ — COSl/'H X2 COS?7 

dtt 4ck2xA[ q q 

/irl<x •if^i 

-V. 2a2 

X a0 , 
\ 4q l+4q2/ l+4q' 

where 

77 = 2^ l n x , 

c=ire'rq/smhTqJ 

c' = c{l-t(l+4a2)/4] ReO} , 

xlc sin?; (2.3) 

2c 2c 
# 0 = — Im£2= — + 4g 4 tanh7r<7 

(3+tanhVg) . 

6 D. M. Fradkin, T. A. Weber, and C. L. Hammer, Ann. Phys. 
(N. Y.) 27, 338 (1964). 

6 G. Rawitscher, Phys. Letters 9, 337 (1964). 
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TABLE I. 

Z 
\v/c 

5° 
10° 
15° 

Ratio of cross section in small-angle approximation 
to that of exact numerical calculation. 

13 

0.4 

1.0000 
1.0000 
1.0000 

79 

0.6889 

1.0002 
1.0010 
1.0009 

80 

0.4 

1.0002 
0.9998 
0.9997 

Our results agree with those of Drell and Pratt7 which 
are given only for the cross section in the limit P=l. 

In Table I, we compare results obtained with the 
approximation (2.3) and exact numerical calculation 
performed on an IBM-709 computer for typical values 
of Z and p. As a general result, the error is less than of 
order 0 .1%. This is remarkable considering the fact 
that for Z = 80, a = 0.58. 

The asymmetry function for the small-angle region is 
similarly obtained: 

f TO2 (simf/—2q cos\f/) 
Sc^2x2(l-p2)^2\ 

-\-xce 
r l 

2 g ( l + V ) 

- f 7 r V / ( l + 4 ? 2 ) 

2q(l+q2) 

T2a2 cos^ 

2q2(l+4q2) 

' /-2c'+c 

(sin\//—2qcos\l/) 

a" 
H—x\ 

2 I l+4g 2 

/ 2q2c'~hc 

G o ) C 
4q ) 

w2a2 \ 
ao) 

4o2 J 
sim/ (2.4) 

^ ( l + 4 g 2 ) 4q2 

In Table I I , we compare our results with exact nu
merical calculations. Here the agreement is not ex
pected to be as good as for the cross section, since the 
main Born term leads to no asymmetry. Nevertheless, 
the small-angle behavior is of the form 

S/2x2 = J0+x(J1+A1cosr)+B1 sinrj) , (2.5) 

where Jo and J\ are given correctly for all a and q in 
(2.4), but A i and Bx are available only to order a4. For 
those values of a and p for which A i and Bx are not well 
convergent, two exact values of S at different angles can 
be used to determine Ax and Ex. Then accurate values 
of S can be obtained at small angles by using (2.5) with 
these values of A\ and Bx. 

III. BEHAVIOR OF dcr/dQ, AND S NEAR 180° 

In this section, we shall develop approximations 
(up to a2) for xc^l. Here we will show that for high-
energy electrons (T> 1 MeV) S has its maximum near 
180° and the angle at which this maximum occurs 
approaches 180° as the energy increases. This behavior 

7 S. D. Drell and R. H. Pratt, Phys. Rev. 125, 1394 (1964). 

of S has been recognized by many people8; we shall 
derive its approximate analytic form. 

Our starting point is Ix in (1-3.8): 

/ i = -
ta* De 

4 T(l + 2iq)jo 
( 1 —j)2*Wj«-*-fl-l 

[ ( i + / ) 2 - % 2 ] 1/2 î > dty (3.1) 

where De= (— i ir+d/dt)^ , and where y = cos#/2 
vanishes at 0 = ir. We can expand (3.1) directly in powers 
of y2 and express each term as a well convergent hyper-
geometric function of argument f. Since da/dti and S 
are desired only to lowest order in y2, we need only the 
first term in Ix: 

rl/2 

.2 sinhx^ 2 

eTq i(l — iq) 

iW2) 

^sinnx^ w(l-\-q2) 

l+2iq d 

4i(l+iq) dc 
F(2iq+2, l ,^; | ) i c = =2+^ (3.2) 

where a— (q cothwq)112. To the same approximation, one 
can write down a similar expression for G\ by using 
(1-2.14) and get 

KT 7TX> 

^ 1 = — G ( 

1/2 / w « i l — iq 2—iq\ 
aeH>n( _|_ _|_ ) 

L 4 VsinhTT? q 1+? 2 4+q2/ 

1 1+2*2 1 

8 (2+iq) (l+iq) 

d 
X -F(2iq+2,3,c;i)\e=it+s~\. (3. 

dc J 
3) 

To order a2, F and G are therefore of the form 

f a 2 / i ° 1 f a2 } 
F^Fol 1 + = F 0 l+~-(A+iB) , 

[ q FQ\ I q J 

f a2 Ji1) f a2 } 
G=Go\ 1 + =Go l+-(E+iH) 

I q GQ\ I q J 

(3.4) 

where A, B, E, H are complicated functions of q ob
tained from (3.2) and (3.3). The cross section is 

da q2(l~P2)\ 
:l+2aPA + 

l+2apE 
(3.5) 

dQ 4k2 { l~p2 J 

In the limit P~» 1, y—*0, the cross section vanishes. 
8 J. W. Motz (private communication); J. W. Motz, H. Olsen, 

and H. W. Koch (to be published); also L. A. Page, Rev. Mod. 
Phys. 31, 759 (1959). 
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TABLE II. Comparison of 6* obtained in small-angle approximation (SA) and (2.4) and by exact numerical calculation (S). 

Z 13 79 80 

0 \ 0.4 0.6889 0.4 
SA S SA S SA S 

5° l.lOlXlO"5 1.108X10-5 1.648X10-4 1.628X10-4 1.202X10-4 1.250X10-4 

10° -2.850X10-5 -2.770X10-5 1.198X10-3 1.272X10~3 -1.450X10-4 -1.316X10-4 

15° -1.964X10-4 -1.931X10-4 3.740X1Q~3 3.949X10~3 -6.833X1Q-4 -7.540X10~4 

The asymmetry function is 

(1- /32)1/2 

aP(B-H) 
x — . — — 

-[^/(l-W1^^) 
= _ — , (3.6) 

i+0W)[)V(H2)] 
where P(afi) and Q(a,fi) are defined by means of (3.6). 
In the limit y —»0, S also vanishes. However, for a given 
(3 it is not hard to see that there is an angle ymax at 
which S is a maximum; with the values 

-cfiP(a,P) / l - j ^ v 1 ' 2 

2lQ{afi)Jn \Q<f*fiV 
It is clear from (3.7) that the angle at which S is maxi
mum approaches 180° as 13—> 1. 

The above analysis is based on the approximation to 
order a2. We may generalize (3.6) to all orders of a2 and 
consider P(afi) and Q(a,0) to include terms of all powers 
of a2. The generalized P{afi) and Q{otfi) can then be 
determined numerically by plotting—aPy/Sil—fi2)112 

versus y2/(l—/32). Such a plot is shown in Fig. 1 and the 
straight-line fit demonstrates the validity of (3.6) and 
shows that the values of P(afi) and Qiafi) are rather 
insensitive function of a and /3. 

It is possible that the striking behavior of the asym
metry function in the backward direction can be used 
as an experimental tool. The present calculation has 
been carried through under the assumption of a point 
Coulomb potential. It is well known that in scattering 
from actual nuclei, the effects of magnetic structure are 
dominant at backward angles. Deviation in the obser
vations from those predicted by (3.6) may perhaps be 
used as a sensitive tool to explore this magnetic struc
ture. These possibilities are being investigated. 

IV. SMALL-ANGLE APPROXIMATION 
FOR A SCREENED FIELD 

a. Analytical Behavior 

In Sec. 3 of Paper I, we studied the behavior of the 
Coulomb amplitudes / and g (or F and G) for small 6. 
In actual scattering, however, the small-angle behavior 
is strongly modified by the effects of atomic screening. 

Exact calculations for a screened potential can only be 
done numerically by solving for the radial wave function 
in order to obtain the phase shifts and then summing 
the partial-wave series.2,3 

A simple analytical approximation is suggested by the 
Born approximation9 for a potential of the form 

V(r)=(Ze2/r)e~r!\ (4.1) 

This modifies the cross section by the factor 

(d<x/dti)screened # 4 

— — = — - , (4.2) 
(dar/dti) Coulomb (x2+iV) 2 

with 
H=l/ka, (4.3) 

but yields no information about the asymmetry. Com
parison with actual calculations for relativistic scatter
ing indicates that (4.3) is a poor representation of the 
effect of screening. For this reason we have extended 
the small angle calculation of Sec. 3 of Paper I to in
clude the effect of screening in an approximate way. 

Our starting point is the partial-wave expansions in 
(1-2.1). We shall introduce the effect of screening by 
imagining that the phase shifts up to a certain value 
of n (or — n— 1) are the Coulomb phases properly modi
fied by adding q lnka= -~q ln/x, and vanish beyond this 

o I MeV 
A 15 MeV 
a 30 MeV 

5f~ x 45 MeV 

FIG. 1. The plot of - a 0 y / S ( l - 0 8 ) 1 / 8 versus y^Kl-p) to 
determine P(afi) and Q(a,p) in (3.6). 

9 G. Moliere, Z. Naturforsch, 2a, 133 (1947), R. H. Dalitz, 
Proc. Roy. Soc. (London) A206, 509 (1951). 
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value. In order to obtain analytic results however we The dominant behavior for small /j, and 6 is contained 
shall modify this prescription by introducing the factor in the contour integral. This integral cannot be evalu-
e-nn m t o t n e Coulomb expressions for e2i7}n—l and ated analytically for arbitrary fx and 6; we shall there-
e2^-^"1—1 to simulate this cutoff on the phase shifts rjn fore evaluate it in the two cases (i) /z<<C0<$C!l and 
and 7?_n-i. The parameter JJL is given by (4.3) as can (ii) 0<<</x<<Cl. 
readily be verified from a WKB approximation for the 
phase shifts for large n. In our phenomenological con- Case (i) n<£j)<^l 
siderations, ju will be taken as being small compared to 1. 0 . , < , ~ J V r n / 

™ , . , T , j . ,, , f, , n betting t=l+2vx, and expanding for small u/x, one 
The above considerations lead directly to the follow- r -, * n , ,̂ „ . -../ , finds eventually: 

mg expressions for the scattering amplitudes: J 

kfe-"t*= - [ L n2Cne~^(Pne^+Pn^e~^) 
2 n - l 

n = l 

+H*« £ (2»+l)«r*»PB ;] ; 

i d <*> 

2 dd n-i 

and 
2q 

•1+iq-e^+e ®. 
J0~C^ eif-2i*Q 

1+e0 

(4.12) 

(4.13) 
2 ^ + 1 

(4.4) Using (4.10), one is ultimately led to the amplitudes 

iqF, 
kf-

• n (iq—%)2 in fn2 

+iq' E C^r"-(Pntf-^+P^.ie^)] • (4.5) 
g~—«?' 

For small ix one obtains the approximate results: 
\ y/ x 

M 

A; 

kf~J2++-J2--iq'Ji~-iq'-Ji++~ : 
2 2 (M

2+4x2)^2 

kg^—xJ2
+-

where 

2x X 

iq fix 

q'^q/y and 7 = V ( l - £ 2 ) 1 / 2 , 
and where 

% oo 

2 n-i 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

iyoi 
7 / a; 

where x— 2<ro— 2<? In (*//*)• This leads to 

(rfer/<^)screened 

UJ' 

(4.14) 

(4.15) 

(da/dti) Coulomb 

2/x j 
d + — Re1 

x I 
pi*. 

(iq-W 1 

^ 4q J 
+ 0 

(4.16) 

2Mr / l \ 1 -I /M
2 \ 

1 cos;/'—smi/M # H sinx + 0{ — ] 
xL \4q I \q J \ x 2 / 

The sums (4.9) are related to one another by the 
expressions 

J W i ± = db ( l i s ) WnF/dz) (4.10) 

which are analogous to (1-2.14). 

and 

V4j 

COSl/' COSX / cosi£ c o s x \ / 1\!" / M \ " 
:/x s in^+ ) ( l ~ ) 1 + 0 - ) 

\ 2q 2q A y)\- \xJ. 
(4.17) 

The following points should be noted from (4.16) 
The sums in (4.9) can be performed in the same way and (4.17) which are valid in the region M « * « 1 : 

as those for „ = <) in Sec. 3 of Paper I. One obtains ( 1 ) T h g c o r r e c t i o n t o t h e c r o s g s e c t i o n d u e t Q s c r e e n . 
directly j n g -g 0 | o r c [ e r ^ x r a ther than n2/x2 as suggested by the 

— i p1 Born approximation result in (4.2). Moreover, it con-

2T(l+2iq) 
dt{\-t)2iqriq~l 

x-
(e"±t) 

tains an oscillatory term. 
(2) The asymmetry is independent of angle in this 

(4.11) region, except for the oscillatory term. 
(3) The asymmetry vanishes in the nonrelativistic 

limit /5 —> 0, as expected. 
where the term independent of z has been dropped since 
(4.6) and (4.7) involve at least one differentiation of „ ,..v ^ ... 
(4.11) with respect to z. The integral in (4.11) can be 
converted as before to an integral from — oo to 0, and In this case it is appropriate to obtain the integral 
one over the contour C shown in Fig. 1 of Paper I, but representations for / i t 2

± corresponding to (4.11) and 
the branch points at t = e±i9 now move to t^e^±iB. to proceed to the limit z'"—•» 1. In this way one is 
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led to 

Jl+^iV(l-2iq)fx
2^-lll+e(x2/ix2)2, (4.18) 

/ r / 2 ^ c - - | i r ( 2 - 2 i g ) M
2 ^ ~ 2 [ l + e ( ^ / M

2 ) ] , (4.19) 

for the leading terms for small \x as oc —> 0, with corre
sponding expressions for J2

± obtained from (4.10). 
From (4.6) and (4.7), one then finds 

^/c^^2^-2[r(2-2^)+l][l+0(^/M2)] 

kg'. -xq\ (l—V**-2r(2-2^) i+©(^) 

which leads to 

(da/'dti) screened 4 x 2 

(da/dti) Coulomb 
and 

i+r(2-2^)|2 

S— 2xq\ HH r T(2-2iq) 

i+r(2-2^)J 

(4.20) 

(4.21) 

(4.22) 

(4.23) 

The following points should be noted from (4.22) and 
(4.23), which are valid in the region %<^ix<^\: 

(1) The correction to (4.22) for x = Q is of order x2/fi2, 
similar to the dependence contained in the Born result 
in (4.2). 

(2) The asymmetry varies linearly with angle near 
x = 0 in the screened case as opposed to the behavior 
proportional to x2 in the Coulomb case. 

(3) The asymmetry vanishes in the nonrelativistic 
limit jS —» 0, as expected. 

(4) The orders of magnitude of (4.17) and (4.23) are 
the same for X^JJL. 

The above approximations for the screened amplitudes 
have been compared with actual numerical computa
tions and the agreement has been reasonable, consider
ing the nature of the approximations. As an example, 
we list in Table I I I 

I gCoulomb j 
1 

TABLE III. Comparison of | gcouiomb/gscreened | with the small-
angle approximation to determine the equivalent screening 
parameter fi. 

L j ^screened | 

for several values of 0, with Z = 7 9 , (}=0.688, using the 
modified Hartree potential.3 According to (4.15) the 
result should be independent of x, which it appears to 
be. Moreover, the value of /x suggested by this procedure 
is 

M = 0 .025rad~1.4° , 

in approximate agreement with (4.3) with a value for 
a consistent with the range of the Hartree potential. 

Lest one get the impression that the procedure is 
without any inconsistencies, let us note the following 

" I gCox 

6 

6° 
10° 
14° 
18° 
22° 
26° 
30° 

2£gCoulomb 

- 1 . 6 9 0 + # 4 . 2 3 0 
- 2 . 6 9 7 + # 0 . 8 0 4 
- 1 . 9 8 3 - # ' 0 . 6 6 7 
- 1 . 2 0 5 - # 1 . 2 2 4 
- 0 . 5 8 6 - # 1 . 3 8 1 
- 0 . 1 2 7 -#1 .357 

0 . 2 0 7 - / 1 . 2 5 3 

•̂ &£sereened 

- 1 . 1 7 4 +#2.849 
- 1 . 9 4 6 +#0.947 
- 1 . 7 3 5 - # 0 . 1 5 7 
- 1 . 2 8 9 -#0 .743 
- 0 . 8 5 3 - # 1 . 0 3 2 
- 0 . 4 8 0 - # 1 . 1 4 6 
- 0 . 1 7 5 - # 1 . 1 6 5 

L 1 ^screened | 

0.0250 
0.0262 
0.0245 
0.0242 
0.0230 
0.0217 
0.0204 

-'] 

points: 

(1) A similar behavior for da/aXl, as given in (4.16), 
also is confirmed, but with a slightly different value of 
fx. This comparison is made more difficult by the 
presence of the In (/*/#) term. 

(2) In performing the comparisons one must take 
ratios of (4.14) and (4.15) with the relativistic un
screened results. If this is not done, errors to the 
bracket of order x occur. Since one must use relatively 
large values of x (6 up to 30°) in order to minimize the 
effect of ji2/x2 terms, this correction of order x must be 
included by using the unscreened results. 

(3) The phases of /screened and Screened, may also be 
compared with /coulomb and gcouiomb to obtain the 
equivalent values for /z. This leads to somewhat different 
values for JJL than that obtained from Table I I I . But this 
is not too surprising since these phases are determined 
by the comparison of the screened and Coulomb phase 
shifts for low n, whereas the value of /x in the brackets 
of (4.14) and (4.15) is determined by the rate at which 
the phase shifts tend to zero for high n. 

(4) The value of S predicted by (4.17) must also be 
compared with Scouiomb f° r the reasons given in (2) 
above. Even with this modification, however, (4.17) 
does not represent more than an order of magnitude 
estimate of S. The reason is that S is sensitive to the 
relative phase of / and g, and the different values of n 
which are appropriate to each term modify the result 
in (4.17). 

(5) The above discussion should also apply to the 
reliability of the forms for X<K^L given in (4.20)-(4.23). 

In spite of the cautions listed above, we have suc
ceeded in obtaining the approximate analytic behavior 
at small angles of the cross section and asymmetry for 
a screened potential. These should serve as a useful 
guide to the comparison of numerical calculations with 
those for the unscreened case. 
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